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Abstract—In this paper, we extend a computationally efficient
framework for tracking of deformable subdivision surfaces in 3D
echocardiography with speckle-tracking measurements to track
material points. Tracking is performed in a sequential state-
estimation fashion, using an extended Kalman filter to update
a subdivision surface in a two-step process: Edge-detection is
first performed to update the model for changes in shape and
position, followed by a second update based on displacement
vectors from speckle-tracking with 3D block-matching. The latter
speckle-tracking update will only have to correct for residual
deformations after edge-detection. This both leads to increased
accuracy and computational efficiency compared to usage of
speckle-tracking alone.

Automatic tracking is demonstrated in a 3D echocardiography
simulation of an infarcted ventricle. The combination of edge-
detection and speckle-tracking consistently improved tracking
accuracy (RMS 0.483, 0.433, 0.511 mm in X,Y,Z) compared to
speckle-tracking alone (RMS 0.663, 0.439, 0.613 mm). It also
improved the qualitative agreement for color-coded strain meshes
to ground truth, and more clearly identified the infarcted region.

I. INTRODUCTION

The introduction of 3D echocardiography has enabled rapid
and low-cost acquisition of volumetric images of the left
ventricle (LV). Tools for assessment of global function, based
on semi-automatic shape segmentation of the endocardial
boundary, have appeared over the last few years [6]. However,
in order to evaluate regional function associated with coronary
artery disease, methods that also estimate the myocardial de-
formation field by tracking material points in 3D are required.

The distinctive speckle pattern found in ultrasound images
has often been considered an undesirable image artifact, since
it reduces the apparent image quality. However, this pattern
have the fortunate property that it, despite being gradually
decorrelated, moves in the same manner as the underlying
tissue being imaged [2]. This property can be exploited to track
the LV myocardial deformation field by means of speckle-
tracking techniques. Several approaches for speckle-tracking
in 3D ultrasound data have been proposed over the last
years. Most prominent are the approaches based on optical
flow speckle-tracking [7], block-matching, and more recently
on elastic volume registration [4]. Most of these approaches

are, however, computationally intensive and require manual
initialization or endocardial tracing.

This paper describes a extension of a model-based state-
estimation framework from [8], [9] with support for combined
edge-detection with speckle-tracking. Edge-detection is first
used to correct for shape and position changes, followed by
a speckle-tracking step to correct for residual deformations.
Together, this results in a fully automatic method for rapid
assessment of cardiac strain in 3D echocardiography. Exper-
imental validation in a simulation of an infarcted ventricle
demonstrates the improved accuracy obtainable with the ap-
proach, compared to using speckle-tracking alone.

II. METHODS

The tracking framework is centered around a deformable
subdivision surface, which is parametrized by a set of control
vertices qi for i ∈ {1 . . . Nq} that are allowed to move to alter
the shape and parameter-space density of the surface. Unlike
in [8], where shape segmentation was the objective, we allow
the control vertices to move freely in any direction, and not
just in the surface-normal direction.

We denote the local deformations Tl(xl) as the deforma-
tions obtained by moving the control vertices of the subdi-
vision model. These local deformations are combined with a
global transform Tg(xg,pl) to position, scale and orient the
model. This leads to a composite state vector x = [xT

g , xT
l ]T

consisting of Ng global and Nl local deformation parameters.
A manually constructed Doo-Sabin subdivision surface [3]

consisting of 20 control vertices is used to represent the LV. A
distribution of approximately 500 surface points, spread evenly
across the surface, is defined to be used for both edge-detection
and speckle-tracking measurements in the tracking framework.

The tracking framework consists of three separate stages,
namely temporal prediction, edge-detection update and
speckle-tracking update. The latter two can be decomposed
into 4 steps each, which results in a total of 9 separate
processing steps, as can be seen in Fig. 1. The prediction
and edge update steps are similar to [8], and will adapt the
model to align it to the endocardial boundary. The second
measurement stage then uses speckle-tracking to acquire 3D
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Figure 1. Overview over the processing steps in the Kalman tracking
framework.

displacement measurements, and update the model for any
residual deformations after the edge-detection. This combined
approach is motivated by the inherent problem of drift, due to
cumulative buildup of tracking error, associated with speckle-
tracking based on sequential block-matching. The proposed
approach limits this problem by using edge-detection to ensure
that the model remains aligned to the endocardial border at all
times during tracking.

The temporal prediction and both state update steps are
identical as in [8], and therefore not covered in this paper.
Instead, this paper focuses on what is new, namely evaluation
of the deformable model, speckle-tracking measurements and
the assimilation of 3D displacement vectors:

A. Evaluation of Deformable Model

1) Calculation of Local Surface Points: The Kalman filter
framework requires the creation of a set of surface points
pl and Jacobi matrices Jl, based on a predicted state vector
x̄l. The creation of these objects can be performed efficiently
following the steps below:

1) Update position of control vertices qi based on the state
vector: qi = q̄i + x(3i)vx + x(3i+1)vy + x(3i+2)vz ,
where q̄i is the initial position of the control vertex,
vx, vy, vz are unit vectors along the x, y and z
axis respectively, and x(3i), x(3i+1), x(3i+2) are the
parameters in the state vector corresponding to this
control vertex. The local state vector for the model then
becomes the concatenation of the state parameters for
all control vertices xl =

[
x0, x1, . . . , x(3Nq−1)

]T
.

2) Calculate surface points pl as a sum of control vertices
weighted with their respective basis functions within the
surface patch of each surface point: pl =

∑
i∈C(cl)

biqi.
3) Calculate Jacobian matrices for the local

deformations Jl by concatenating the unit vectors
multiplied with their respective basis functions:
Jl =

[
bi1vx, bi1vy, bi1vz, bi2vx, . . .

]
i∈C(cl)

.
The Jacobian matrix will here be padded with zeros for
columns corresponding to control vertices outside the
region of support for the surface patch of each surface
point.

Basis functions and Jacobians for these points can be pre-
computed during initialization, as described in [8], since the
parametric coordinate distribution remain fixed during track-
ing.

2) Global Transform: We denote pl and Jl as the surface
points and Jacobian created from the subdivision surface with
local deformations Tl(xl). These points are subsequently
transformed by means of a global pose transform Tg , that
translates, rotates and scales the model to align it correctly
within the image volume:

pg = Tg(pl,xg) . (1)

The Jacobian matrices for the composite deformations then
becomes the concatenation of both global and local state-space
derivatives. The local part is created by multiplying the 3× 3
spatial Jacobian matrix for the global transform with the 3×Nl

local Jacobian matrix for the deformable model, as follows
from the chain-rule of multivariate calculus:

Jg =
[
∂Tg(pl,xg)

∂xg
,

∂Tg(pl,xg)
∂pl

Jl

]
. (2)

B. Edge or Speckle-tracking Measurements

Either edge-detection or speckle-tracking is here performed
to compute 3D displacement vectors v = [vx, vy, vz]

T

relative to the predicted surface points p, as well as associated
measurement noise values r .

Endocardial edge-detection is performed in search-profiles
perpendicular to the surface, as described in [8]. The position
of the detected edges are then shifted 1 mm to align the
model slightly inside the myocardium where speckle pattern
is present.

Speckle-tracking is performed by matching search windows
centered around the predicted surface points after the edge
update to a smaller kernel window extracted from surface
points in previous frame after all update steps were performed.
The displacement vectors are computed by first performing
3D block-matching using a sum of absolute differences (SAD)
metric to determine integer displacements. This is followed by
translative Lucas-Kanade optical flow estimation on the best
integer voxel match to correct for sub-sample displacements.
The SAD matching operation was implemented using SIMD
vector instructions and multi-core parallelization to run effi-
ciently. Tracking is performed directly on the "raw" grayscale
data acquired in spherical coordinates. More details on the
speckle-tracking implementation and parameter configuration
can be found in [9]. Measurement noise values was computed
based on the ratio between the best and average SAD matching
value for each point.

Simple outlier rejection was performed for both edge-
detection an speckle-tracking, based on the measurement noise
values and a comparison with neighboring displacement vec-
tors in a local search area. Parameters were adjusted by trial
and error.

C. Measurement Assimilation

The measurements can be efficiently assimilated in informa-
tion space if we assume that they are uncorrelated [1], since
uncorrelated measurements lead to a diagonal measurement
covariance matrix R. All measurement information can then
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Figure 2. Example screenshots showing typical frame-to-frame displacement
vectors from edge-detection (a) and speckle-tracking (b).

(a) (b)

Figure 3. The topology of the subdivision model (a), as well as a rendering
of the same model fitted to the endocarduim during tracking (b).

be summed into an information vector and matrix of dimen-
sions invariant to the number of measurements:

HT R−1v =
∑

i H
T
i vir−1

i (3)

HT R−1H =
∑

i H
T
i Hir−1

i . (4)

Usage of unit vectors in x, y and z-direction for displacing
control vertices enables direct usage of the Jacobian ma-
trices as measurement matrices in the Kalman filter, since
HT = [vx, vy, vz]T J = J. A covariance matrix for the
measurement can also be used instead of scalar measurement
noise values if one desires to capture any non-isotropy in the
spatial uncertainty of the displacement, but this is not done in
this paper.

III. RESULTS

In order to evaluate the feasibility and performance of the
method, both the proposed method, as well as the speckle-
tracking method of [9] was applied to a 3D ultrasound
simulation of an infarcted ventricle. The simulation served as
ground truth on which to compare both methods against.

The 3D ultrasound simulation was based on a finite element
simulation of a left ventricle with an anterio-apical infarction
[10]. Material points from the finite element simulation were
fed as scatter points into a k-space ultrasound simulator
[5] to create 3D ultrasound images with a realistic speckle
pattern. Tracking was initialized automatically by using edge-
detection to align the model to the endocardial boundary.
After initialization, the model was moved 1 mm inside the
myocardium, and edge-detection was combined with speckle-
tracking to track the speckle pattern from frame to frame, as
can be seen in fig. 2.

Figure 4 shows scatter plots of the correlation of displace-
ment vectors from end diastole (ED) to end systole (ES)

(a)

(b)

Figure 4. Scatter plot for estimated displacement vectors relative to ground-
truth for tracking using speckle-tracking alone (a), and for edge-detection
combined with speckle-tracking (b).

Speckle-tracking alone Edge-detection & speckle-tracking
X axis 0.663 mm (30.3%) 0.483 mm (22.1%)
Y axis 0.439 mm (60.2%) 0.433 mm (60.1%)
Z axis 0.613 mm (26.4%) 0.511 mm (22.3%)

Table I
ROOT-MEAN-SQUARE (RMS) ERRORS IN ED TO ES DISPLACEMENT

VECTORS ON THE TRACKED MESH, COMPARED TO GROUND TRUTH. THE
RELATIVE ERRORS ARE COMPUTED RELATIVE TO THE RMS OF

GROUND-THRUTH DISPLACEMENT VECTORS.

on the tracked surface. The displacements are divided into
their X, Y and Z components1, and compared to ground truth
values from the simulation. Both absolute and relative root-
mean-square (RMS) error analysis on the scatter plots was
conducted as shown in table I. The analysis shows improved
agreement for the combined approach, with the scatter points
closer to the unit line than with speckle-tracking alone. This
improvement was mainly caused by less underestimation of
large displacements.

After tracking, the subdivision surface were re-meshed into
a quadrilateral mesh, and color-coded based on area strain
(ε = (a − a0)/a0), which is a measure of relative area
change in each quadrilateral that combines the effect of
longitudinal and circumferential strain. Figure 5 shows ES
area strain values across the tracked surface using speckle-
tracking alone, combined edge-detection and speckle-tracking,
as well as ground truth strain values. The infarcted regions
are correctly identified by both methods, although speckle-
tracking alone leads to underestimated and smeared out strain
values compared to the combined approach. A slight misfit
between the shape of the model and the ground truth, caused

1The X axis corresponds to the azimuth axis of the probe, the Y axis image
depth and the Z axis the elevation axis of the probe.



Figure 5. Front and back views of color-coded area strain meshes at ES
based on speckle-tracking alone (left), edge-detection and speckle-tracking
(center), as well as the ground truth (right).

by the smooth subdivision model’s inability to represent the
sharp apex shape, was also observed.

Usage of the tracking sequence consumed approximately 68
ms of processing time per frame on a 2.2 GHz Intel Core 2
duo processor. Speckle-tracking alone required larger search
windows to compensate for the lack of edge-detection updates,
and therefore consumed 130 ms processing time per frame.

IV. DISCUSSION AND CONCLUSIONS

We have presented a new approach for model-based LV
tracking based on [8] that combines edge-detection with
speckle-tracking measurements to track material points over
time in 3D echocardiography. The proposed method automat-
ically initializes the model to the endocardium using edge-
detection, and then uses a combination of speckle-tracking
with edge-detection to track material deformations over time.
Usage of this method might therefore enable rapid analysis of
regional myocardial function.

The robustness of the Kalman filter framework enables fully
automatic behavior without manual initialization, as shown in
previous papers. The non-iterative formulation also makes the
approach computationally efficient, although not as fast as [9].
This increase in running-time is caused by the extra edge-
detection step, as well as usage of more surface points for
speckle-tracking. Larger search windows was also used in the
speckle-tracking alone approach to improve tracking accuracy
at the expense of computational efficiency.

Results from the simulated infarcted heart clearly show that
the combination of speckle-tracking with edge-detection leads
to improved tracking accuracy over speckle-tracking alone.
The agreement between ES displacement vectors and ground
truth improves consistently with the proposed method, and
the problem with underestimated strain values from [9] is no
longer present. Instead, the center of the infarction exhibits
magnified strain. The authors are not sure about the reason
for this magnification, but suspects that it might be related to

how the Kalman filter compensates for the interpolative effect
of the subdivision surface in the model update step.

The combination of speckle-tracking with edge-detection
offers several advantages compared to using speckle-tracking
alone. Usage of edge-detection will correct for shape changes
as well as gross global deformations, such as the movement
of the basal plane, prior to the speckle-tracking step. This
helps reduce the surface-normal component of the inherent
drift associated with sequential block-matching over time,
making tracking more robust. It also enables smaller search
windows to be used, since speckle-tracking is only used to
correct for residual deformations, after edge-detection is per-
formed. Smaller search windows both increases computational
efficiency, and offers more robust tracking due to fewer local
minimums in the block-matching.

With feasibility of the method demonstrated, the next step
will be to test it in more simulations, as well as in in-vivo
data. The latter will pose additional challenges, due to the
noisy nature of echocardiography, as well as the range of
artifacts degrading image quality. Approaches to further reduce
drift and improve accuracy should therefore be investigated.
Currently, tracking is performed sequentially, from one frame
to the next. This can be extended with bidirectional tracking,
using both a forward and backward Kalman filter to improve
tracking accuracy and reduce drift.
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