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Abstract—In this paper, we present an extension of a computa-
tionally efficient Kalman filter based tracking framework to allow
simultaneous tracking of several deformable models in volumetric
data. The models are coupled through shared transform nodes in
a hierarchical structure to enforce common position, orientation
and scaling, but are allowed to alter shape independently.
Automatic tracking of the endo- and epicardial border using two
Doo-Sabin subdivision surfaces in 3D echocardiography serves
as exemplary application.

Fully automatic endo- and epicardial surface is demonstrated
in a simulation and 5 in-vivo recordings of high image quality.
The estimated myocardial volumes is overestimated by 4.2 ml
(7.0%) compared to ground truth in the simulation, wheras the
volumes in the in-vivo recordings are on average underestimated
by 10.7 ml (8.0%) compared to independent reference segmen-
tations.

I. INTRODUCTION

Left ventricular (LV) mass and volume has been proven to
be an important precursor for a variety of conditions such as
cardiomyopathy, hypertension, valvular disease [8], as well as
a predictor of prognosis.

The emergence of 3D ultrasound has enabled real-time
volumetric imaging of the heart. Several methods for 3D
segmentation have been proposed, most intended for the detec-
tion of the endocardium for volume measurement. However,
simultaneous detection of endo- and epicardium also allows
for estimation of myocardial volume, and automatic wall
thickening analysis.

The feasibility of measuring LV thickness in 3D echocar-
diography was proven by Hubka et al. [5], which employ
manually traced contours, on data to reconstruct smooth
subdivision surface of the endo- and epicardium separately.
Walimbe et. al [11] presented a fully automatic method,
which uses deformable models coupled with an iterative mesh
refinement scheme that incorporates a-priori knowledge of
endo- and epicardial surfaces. Results on MRI data have
been presented in [6][1]. More recently, [10], [9] validated
myocardial volumes from semi-automatic endo- and epicardial
segmentation against MRI. However to our knowledge, most
of these approach require extensive user interaction to achieve
sufficient accuracy. They are also computationally intensive,
which prevents them from operating in real-time.

The authors want to thank Brage Amundsen (NTNU) for acquiring the in-
vivo recordings, and Olivier Gérard (GE Vingmed Ultrasound) for conducting
the reference volume measurements.

In this paper, we extend previous work on 3D endocardial
segmentation [7] with support for simultaneous tracking of
several deformable models, arranged in a hierarchy of geomet-
ric transforms. Two subdivision surfaces are used to represent
the endo- and epicardium, and tracking is evaluated in a sim-
ulated phantom image, as well as in five 3D echocardiography
recordings of high quality. The obtained myocardial volumes
are compared against the ground-truth and volumes from a
commercial segmentation tool.

II. METHODS

Simultaneous multi-model tracking poses additional chal-
lenges, compared to single-model tracking. This especially
applies to the relative position and shape of the models, which
has to be constrained to prevent intersections and other form
of unrealistic results. In this paper, we employ a hierarchical
approach to multi-model tracking, that constrains the position,
size and orientation of the models relative to each other in a
simple and intuitive way.

Deformable models are arranged in a hierarchical structure,
much like the scene-graphs known from computer graphics[3].
The models becomes leaf nodes in this hierarchy, which
are connected by geometric transforms as internal nodes.
Geometric transforms are typically used for positioning, scal-
ing and orientation, and the models beneath each transform
automatically shares these properties. Geometric transforms
may also be arranged beneath other transforms recursively,
to form multi-level hierarchical structures. Fig. 2(a) shows an
example of the simple tracking hierarchy used in this paper,
that consists of an endocardium and an epicardium model,
coupled together by a global pose transform, as well as a
scale transform to enlarge the epicardium model relative to
the endocardium model.

Both model and transform nodes will typically have param-
eters that affects either shape or pose. For tracking in a state-
estimation framework, these parameters have to be concate-
nated into a composite state vector. For doing so, we follow
a depth-first traversal convention to construct the state vector.
This convention works recursively from the root transform, by
first appending the transform parameters with parameters from
each child model, and then appending recursively with con-
catenated parameters from each child transform. The example
hierarchy in Fig. 2(a) will e.g. result in a state vector on the
following form x =

[
xT

g xT
a xT

s xT
b

]T
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Figure 1. Flowchart over the 5 processing stages in the Kalman tracking
framework.

Tracking is performed by following approximately the same
5-step procedure as in [7], but model construction and edge
measurements will have to be performed independently for
each model as shown in Fig. 1.

A. Deformable Subdivision Models

Both the endocardial and epicardial surface are modeled
as smooth subdivision surfaces. In this paper, we use two
Doo-Sabin [4] subdivision surface of identical topology, as
shown in fig. 2. Both models are parametrized by 20 control
vertices qi, that are allowed to move inwards and outwards
along a displacement vector di approximately equal to the
surface normal to alter the shape. Fig. 2(a) shows the initial
shape and topology for the subdivision models. In building
the tracking hierarchy, the epicardial model is connected to a
fixed scaling transform to enlarge it relative to the endocardial
model. Both models as then connected to a global transform
with 7 parameters for position, scaling and rotation. In total,
this yields 47 parameters to be estimated based on edge
measurements during tracking.

Edge-detection is performed relative to fixed parametric
coordinates on the models. The distribution of these parametric
coordinates (including patch number) (u, v, c)l are typically
distributed evenly across the model surface as shown in Fig.
2(b), and remains fixed during tracking. This enables efficient
precalculation of their basis functions during initialization as
described in [7]. These basis functions are independent of the
position of the control vertices, and can therefore be re-used
during tracking to efficiently generate surface points regardless
of shape deformations.

B. Evaluation of Surface Points

The Kalman filter framework requires creation of a set of
surface points pl with associated normal vectors nl and Jacobi
matrices Jl, based on a predicted state vector x̄l. The creation
of these objects can be performed efficiently following the
steps outlined below:

1) Update position of control vertices qi based on the
state vector: qi = q̄i + xidi, where q̄i is the mean
position of the control vertex and xi is the parameter
corresponding to this control vertex in the state vector
for each control vertex. di is the displacement direction
for control vertex qi. The local state vector for the
model is the concatenation of the state parameters for
all control vertices xl = [x1, x2, . . . , xNl

]T . One can
here chose to force certain vertices to remain stationary
during tracking without altering the overall approach.
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Figure 2. (a) The tracking hierarchy, which consists of two subdivision
models (Ma and Mb), connected by a scale transform and a global transform
(Ts and Tg). (b-c) Renderings of the subdivision model used for both endo-
and epicardium: (b) shows the individual surface patches, enclosed in a
wireframe grid of control vertices, while (c) shows the distribution of search
profiles used for edge-detection.

This would both reduce the deformation space, as well
as the number of parameters to estimate.

2) Calculate surface points pl as a sums of control vertices
weighted with their respective basis functions within the
surface patch of each surface point: pl =

∑
i∈C(cl)

biqi.
3) Calculate surface normals nl as the cross product be-

tween the partial derivatives of the basis functions with
regards to parametric values u and v within the surface
patch of each surface point: nl =

∑
i∈C(cl)

(bu)iqi ×∑
i∈C(cl)

(bv)iqi.
4) Calculate Jacobian matrices for the local deformations

Jl by concatenating the displacement vectors mul-
tiplied with their respective basis functions: Jl =[

bi1di1 , bi2di2 , . . .
]
i∈C(cl)

. The Jacobian matrix
will here be padded with zeros for columns correspond-
ing to control vertices outside the region of support for
the surface patch of each surface point.

Precomputation of basis functions enables the operations
above to be performed very quickly, which is crucial for
enabling real-time implementations.

C. Surface Point Transformation

Surface points originating from child models or transforms
are transformed by means of a geometric transform Tg to
position, orient and scale the models.

We denote pl, nl and Jl for the surface points created
from the subdivision surface with local deformations Tl(xl).
These points are subsequently transformed by means of a
transform Tg , that translates, rotates and scales the model to
align it correctly within the image volume. Surface points are
trivially transformed using Tg , whereas normal vectors must
be transformed by multiplying with the normalized inverse
spatial derivative of Tg to remain surface normals after the



global transform [2]:

pg = Tg(pl,xg) (1)

ng =
∣∣∣∣∂Tg(pl,xg)

∂pl

∣∣∣∣ (
∂Tg(pl,xg)

∂pl

)−T

nl (2)

The Jacobian matrices for the composite deformations then
becomes the concatenation of both global and local state-space
derivatives. The local part is created by multiplying the 3× 3
spatial Jacobian matrix for the global transform with the 3×Nl

local Jacobian matrix for the deformable model, as follows
from the chain-rule of multivariate calculus:

Jg =
[
∂Tg(pl,xg)

∂xg
, 0,

∂Tg(pl,xg)
∂pl

Jl, 0
]

. (3)

The zero padding of the Jacobian matrices depends of
the relative position of the model’s parameters in the track-
ing hierarchy. The Jacobians for the models in Fig. 2(a)
therefore becomes Ja =

[
Jg Ja 0 0

]T
and Jb =[

Jg 0 Js Jb

]T
.

D. Kalman Tracking Framework

The overall tracking framework is based on the framework
introduced in [7], with most steps very similar and therefore
only briefly presented in this paper. The primary difference is
that steps 2 through 4 are performed independently for each
model in the tracking hierarchy as shown in Fig. 1, instead of
only for a single model. The 5 steps can be summarized as:

1) Temporal prediction of the composite state vector
x̄k+1 = f (x̂k, x0) based on the updated state from
previous frame and a prediction function f, with asso-
ciated increase in the covariance matrix. The temporal
function is typically a linear autoregressive model.

2) Evaluation of tracking points p, normal vectors n and
Jacobian matrices J for all models in the tracking
hierarchy, based on the predicted state x̄k as described
in sections II-B and II-C.

3) Detection of normal displacement measurements v, mea-
surement noise r and measurement vectors h = nT J,
based on edge detection in the image volume, relative
to surface points from the predicted models.

4) Assimilate measurement results from each model by
summing the results in information space: HT R−1v =∑

i hir−1
i vi, HT R−1H =

∑
i hir−1

i hT
i .

5) Compute an updated state estimate, based on the pre-
diction and measurement information: x̂k = x̄k +
P̂kHT R−1vk, P̂−1

k = P̄−1
k + HT R−1H.

The net result of this approach is that edge measurement
performed on each model will primarily affect local shape
parameters, as well as parameters for each transform above the
model in the hierarchy. Changes in parameters to unconnected
nodes or non-descendant nodes in the hierarchy, such as e.g.
sibling models, will not be observable due to the sparse nature
of the Jacobian matrices.

Recording Estimated volume Reference volume
1 95.1 ± 7.9 ml 102.5 ± 0.7 ml
2 136.0 ± 9.9 ml 167.5 ± 24.7 ml
3 114.2 ± 5.1 ml 108.5 ± 0.7 ml
4 134.9 ± 7.0 ml 149.5 ± 9.2 ml
5 135.7 ± 5.4 ml 141.5 ± 9.2 ml

simulation 64.2 ± 1.7 ml 60.0 ml

Table I
THE CENTER COLUMN SHOWS ESTIMATED MYOCARDIAL VOLUME (MEAN
± STD) FOR EACH RECORDING, BASED ON ENDO- AND EPICARDIAL

TRACKING IN ONE CARDIAC CYCLE. THE RIGHT COLUMN SHOWS THE
REFERENCE VOLUMES (MEAN ± STD), BASED ON MANUAL TRACING IN

ED AND ES.

III. RESULTS

Tracking was validated in one 3D echocardiography simula-
tion of an infarcted ventricle, as well as in 5 in-vivo recordings
of high image quality (Vivid 7, GE Vingmed Ultrasound,
Norway). Myocardial volume was computed for all frames
in each recording, based on the volume difference between
the two models. Semiautomatic segmentation of the endo-
an epicardium was performed by an experienced independent
operator in both end diastole (ED) and end systole (ES) for the
in-vivo recordings using a modified version of the AutoLVQ
tool (GE Vingmed Ultrasound, Norway). The average of the
ED and ES myocardial volume served as reference for the
experiment. The simulation had a known myocardial volume,
that was used as reference.

Tracking was fully automatic, with the exact same initial-
ization in all of the recordings, and consumed an average of
9.5 ms processing time per frame on a 2.2 GHz Intel core
2 duo processor. This enables it able to operate in real-time,
potentially during image acquisition.

Fig. 3 shows screenshots of tracking in the simulation,
one of the in-vivo recordings, as well as a normalized my-
ocardial volume-plot for each of the in-vivo recordings. For
the simulated data, the proposed method overestimated the
myocardial volume on average with 4.2 ml (7.0%) compared
to the simulation, with a mean computed myocardial volume
64.2 ± 1.7 ml. On the in-vivo data the proposed method
underestimated the myocardial volume on average with 10.7
ml (8.0%), with a mean myocardial volume of 123.2 ± 18.2
ml when averaging across all recordings, whereas the average
volume from the references was 133.9 ml. Table I shows the
individual results within each recording. The 68% confidence
interval (mean ± STD) for all in-vivo volumes lie within the
corresponding 68% confidence intervals from the reference
tool.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we have presented an extension of an existing
tracking framework to support simultaneous segmentation and
tracking of several deformable models by means of hierarchi-
cal modeling. Coupled endo- and epicardial segmentation in
3D echocardiography served as exemplary application. Results
from fully automatic tracking in one simulation as well as 5
recordings of high image quality demonstrates the feasibility
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Figure 3. Screenshots of tracking in the simulation (a), as well as one of
the in-vivo recordings (b). The screenshots shows several slices through the
volume, with intersection lines for the endo- and epicardium models, as well
as a volume plot for each model. (c) Shows the computed myocardial volume
in normalized time (from ED to ED) for each in-vivo recording.

of the approach for myocardial volume estimation. Results
from the simulation showed low volume bias, while the in-vivo
results are within the interval of myocardial masses reported
by Takeuchi and Pouleur [10], [9].

3D echo recordings of less than optimal image quality
often suffers from areas of drop-out and other forms of image
degradation that makes accurate edge-detection of especially
the epicardium difficult. These difficulties can at least partly be
alleviated by incorporating surface attractors, that are manually

placed by the user. Such attractors can be implemented as
virtual edge measurements towards specific spatial positions,
indicated by the user in e.g. ED and ES, and would then assist
the segmentation in areas of missing or degraded image data.

Currently, the shape of each model are updated indepen-
dently. The global transform is the only parameters shared
between the models. This independence makes it difficult
to impose efficient regularization of inter-model thickness or
to prevent intersection between the models. An alternative
would be to extend the surface models with inherent thickness
parameters, instead of using two coupled models. This could
enable more robust and well behaved tracking in recordings
of lower image quality.

Multi-model tracking leads to long state-vectors and covari-
ance matrices, since parameters from all models are concate-
nated together. Matrix operations in the Kalman filter generally
scale in O(N3) for N states, which leads to poor computational
efficiency when many models are combined. Possibilities for
decomposing the Kalman filter into several smaller filters,
with responsibility for smaller parts of the hierarchy should
therefore be investigated.
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