Real-time Left Ventricular Speckle-Tracking in
3D Echocardiography With Deformable
Subdivision Surfaces

Fredrik Orderud!, Gabriel Kiss!, Stian Langeland?, Espen W. Remme?,
Hans Torp', and Stein I. Rabben?

! Norwegian University of Science and Technology (NTNU), Norway
2 GE Vingmed Ultrasound, Norway
3 Department of Cardiology, Rikshospitalet, Norway

Abstract. In this paper, we extend a computationally efficient frame-
work for real-time tracking of deformable subdivision surfaces in 3D
echocardiography with speckle-tracking measurements to track material
points. Tracking is performed in a sequential state-estimation fashion,
using an extended Kalman filter to update the subdivision surface based
on displacement vectors from 3D block-matching in the left ventricular
wall. Fully automatic tracking is demonstrated in two simulations of an
infarcted ventricle, as well as in a set of 21 in-vivo 3D echocardiograms.
Credible tracking results were achieved in all cases, with an average drift
ratio of 12.08 £ 2.09% (2.7 & 1.0mm). The infarcted regions were also
correctly identified in both of the simulations. Due to the high compu-
tational efficiency of the method, it is capable of operating in real-time.

1 Introduction

With the introduction of 3D echocardiography, rapid and low-cost acquisition
of volumetric images of the left ventricle (LV) has become feasible. Tools for
assessment of global function, based on semi-automatic shape segmentation of
the endocardial boundary, have appeared over the last few years [1]. However,
in order to evaluate regional function of the LV, methods that also estimate
myocardial deformation by tracking material points are required.

The distinctive speckle pattern found in ultrasound images has often been
considered an undesirable image artifact, since it reduces the apparent image
quality. However, this pattern have the fortunate property that it, despite being
gradually decorrelated, moves in the same manner as the underlying tissue being
imaged [2]. This property can be exploited to track the LV myocardial defor-
mation field by means of speckle-tracking techniques. Existing approaches for
2D and 3D speckle-tracking include: Horn-Schunck optical flow speckle-tracking
[3], band-pass Gabor filtering prior to block-matching [4], tracking single speckle
points with motion coherence regularization of the velocity field [5] and elastic
volume registration using B-splines coupled with a mutual-information metric
[6]. To our knowledge, none of these approaches have been demonstrated to
achieve real-time processing times when applied to volumetric data.



This paper describes a fully automatic, real-time method for LV tracking of
material points in 3D echocardiography. It extends the subdivision model based
Kalman-filter method of [7], with speckle-tracking to capture the full myocardial
deformation pattern, and not only shape changes. A combination of integer voxel
displacement estimation using block matching, coupled with optical flow correc-
tion of the best match, is used to achieve sub-voxel displacement estimation.

2 Methods

The tracking framework is based on a deformable subdivision surface, consisting
of control vertices q; for ¢ € {1...N,} that are allowed to move to alter the
shape and parameter-space density of the surface. Unlike in [7], where shape
segmentation was the objective, we allow the control vertices to move freely in
any direction, and not just in the surface-normal direction. In addition to the
control vertices, the topological relationships between the control vertices have to
be defined in a list C'(c), that maps surface patches ¢ € {1... N} to enumerated
lists of control vertex indices that define the control vertices influencing each
surface patch.

We denote the local deformations T;(x;) to our deformable model as the
deformations obtainable by moving the control vertices of the subdivision model.
These local deformations are combined with a global transform T,(x4,p;) to
position, scale and orient the model. This leads to a composite state vector
X = [xg, xlT]T consisting of IV, global and N; local deformation parameters.

A manually constructed Doo-Sabin subdivision surface [8] consisting of 20
control vertices is used to represent the LV. A distribution of approximately 450
surface points, spread evenly across the surface as in [7], are used as shown in
Fig. 1(a). These points are used as a basis for both edge-detection and speckle-
tracking measurements, and consists of parametric coordinates (including patch
number) for each of the surface points.

The tracking framework is decomposed into the 5 separate steps shown in Fig.
1(b). Most of the steps are similar to [7], with the exception of the measurement
step, where edge-detection is replaced with 3D speckle-tracking to update the
model. Edge-detection is instead used solely to automatically initialize the model
to the endocardial boundary, prior to speckle-tracking. This initialization leads
to shape deformations, by moving control vertices inwards and outwards in the
direction perpendicular to the surface, but does not impose any deformations
along the surface to alter the parameter-space density, as speckle-tracking does.

The Kalman prediction step and Kalman update steps are identical as in [7],
and therefore not covered in this paper. Instead this paper focuses on what is
new, namely evaluation of the deformable model, speckle-tracking measurements
and assimilation of 3D displacement vectors:

2.1 Evaluation of Deformable Model

Calculation of Local Surface Points: The Kalman filter framework requires
the creation of a set of surface points p; and Jacobi matrices J;, based on a pre-
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Fig. 1. (a) The Doo-Sabin subdivision surface used for tracking, which consists of 20
control vertices shown in the encapsulating wire-frame mesh. The speckle-tracking dis-
tribution is illustrated with black dots on the surface. (b) Overview over the processing
chain for each new frame in the Kalman filter tracking framework.

dicted state vector X;. The creation of these objects can be performed efficiently
following the steps below:

1. Update position of control vertices q; based on the state vector: q; =
Qi + T(3i)Ve + T(3i41)Vy + T(3i42)Vz, Where q; is the initial position of the
control vertex, vz, vy, V. are unit vectors along the x, y and z axis repec-
tively, and (3s), Z(3i41), T(3i12) are the parameters in the state vector cor-
responding to this control vertex. The full state vector for the model then
becomes the concatenation of the state parameters for all control vertices
X = [xo, T1, ooy fE(qu—1)]T

2. Calculate surface points p; as a sum of control vertices weighted with their
respective basis functions within the surface patch of each surface point:
P = ZiEC(cl) b;q;.

3. Calculate Jacobian matrices for the local deformations J; by concatenat-
ing the unit vectors multiplied with their respective basis functions: J; =
[bilvx, b;, vy, bi, vz, by, vy, ] icC(e)- The Jacobian matrix will here be
padded with zeros for columns corresponding to control vertices outside the
region of support for the surface patch of each surface point.

Basis functions for these points can be precomputed during initialization if we
restrict the parametric coordinate distribution of the surface points to be con-
stant throughout the tracking. This allows the above operations to be performed
very quickly, which is crucial for enabling real-time implementations.

Global Transform: We denote p; and J; for the surface points created from
the subdivision surface with local deformations T;(x;). These points are subse-
quently transformed by means of a global pose transform T, that translates,
rotates and scales the model to align it correctly within the image volume:

Py = Tg(plvxg) . (1)



The Jacobian matrices for the composite deformations then becomes the con-
catenation of both global and local state-space derivatives. The local part is
created by multiplying the 3 x 3 spatial Jacobian matrix for the global trans-
form with the 3 x N; local Jacobian matrix for the deformable model, as follows
from the chain-rule of multivariate calculus:

_ 0Ty (pi,%x5)  OTy(P1s%y)
J, = o%, , o, Jil . (2)

2.2 Speckle-tracking Measurements

Speckle-tracking measurements are performed 1mm outside the endocardial sur-
face, in order to track deformations inside the myocardium. There, 3D displace-
ment vectors v = [vg, vy, vz]T for local motion are inferred by matching pre-
dicted surface points p in the current frame to associated surface point from
the updated model in the previous frame. The measurements are computed by
first performing 3D block-matching using a sum of absolute differences (SAD)
metric to determine integer displacements. This is followed by translative Lucas-
Kanade optical flow estimation [9] on the best integer voxel match to correct for
sub-sample displacements, as was done for 2D tracking in [10].

Implementation of this matching can be done efficiently on modern processors
by using vector instructions and multi-core parallelization of the SAD operations.
Furthermore, preprocessing of the data is avoided by doing the tracking directly
on the "raw” grayscale ultrasound data acquired in spherical coordinates. Track-
ing is performed in data decimated in the beam propagation direction by a factor
of four to reduce window sizes, since ultrasound image resolution is significantly
higher in this direction compared to the two lateral directions. A kernel size of
4x4x4 voxels is used, while the search window has an adaptive size, based on im-
age depth, to make its cartesian dimensions approximately constant regardless
of image depth.

Associated measurement noise values r, for the spatial uncertainty of the
displacement measurement, are computed based on the ratio between the best
and average SAD matching value for each point. After computing the measure-
ments, simple outlier rejection is performed, based on the measurement noise
values and a comparison with neighboring displacement vectors in a local search
area. Parameters were adjusted by trial and error.

2.3 Measurement Assimilation

The measurements can be efficiently assimilated in information space if we as-
sume that they are uncorrelated [11], since uncorrelated measurements lead to a
diagonal measurement covariance matrix R. All measurement information can
then be summed into an information vector and matrix of dimensions invariant
to the number of measurements:

H'R 'v=3 H v} (3)
H'R'H=Y H'H; . (4)



Usage of unit vectors in x, y and z-direction for displacing control vertices enables
direct usage of the Jacobian matrices as measurement matrices in the Kalman
filter, since H” = [v,, v, v.]TJ = J. A covariance matrix for the measurement
can also be used instead of scalar measurement noise values if one desires to
capture any non-isotropy in the spatial uncertainty of the displacement, but this
is not done in this paper.

3 Experimental Validation & Results

In order to show the feasibility of the method and validate its performance, the
method was applied to both simulated and in-vivo data sets:

3.1 Data Description

Two volumetric ultrasound datasets was generated for the experiment, based on
a finite element simulation of a left ventricle with an anterio-apical infarction.
The first simulation used an ellipsoidal shape for the myocardium, while the
second used the average shape of five canine ventricles. The motion and defor-
mation of the ventricle was determined by modeling internal systolic contraction
forces and external forces from the cavity pressure, and the infarcted area was
modeled by abolishing contractile forces in the anterio-apical region, as in [12]. A
k-space ultrasound simulator, described in [13], was then used to create realistic
3D ultrasound simulations based on scatter positions extracted from the finite
element model.

In addition to the simulations, a collection of 21 apical 3D echocardiography
recordings of adult patients, of which half were diagnosed with heart diseases,
were used for in-vivo validation of the method. These recordings were acquired
with a Vivid 7 scanner (GE Vingmed Ultrasound, Norway) using a matrix array
transducer (3V). The exact same configuration was used to initialize tracking in
all in-vivo recordings.

3.2 Simulated Data Results

After tracking, the subdivision surfaces were re-meshed into a grid-structured
mesh in a manner that preserves material points. Area strain € = (a — ag)/ag
values were then computed locally across the surface by comparing the area
of each quadrilateral during tracking with associated end-diastolic (ED) areas.
These strain values represents variations in the parameter-space density of the
subdivision surface, which should correspond to the total muscle contraction
locally in a manner that combines the effect of longitudinal and circumferential
strain.

Figure 2(b) shows end-systolic (ES) area strain values across the tracked
surface, together with ground truth strain values from both simulations. The
infarcted regions exhibit small contraction or stretching, and therefore show up
as blue and green, while healthy myocardium is contracting, and therefore shows



up as red. One can clearly see that the infarcted regions are correctly identified
in the tracked meshes, although the strain values in the infarcted regions are un-
derestimated compared to the ground truth, especially in the second simulation
which has a more complex geometry.

(b)

Fig. 2. Results from tracking in the simulated data, showing (a) intersection slices
through the simulations, as well as front & back views of color-coded area strain meshes
at ES from (b) the tracked strain meshes and (c) ground truth values. Results from the
infarcted ellipsoid (simulation 'A’) are shown in the top row, and from the infarcted
dog-heart (simulation ’B’) in the bottom row.

3.3 In-vivo Results

For the in-vivo data, no ground truth was available, so tracking was instead
evaluated by computing the average ratio between the drift of surface points
after tracking an entire cardiac cycle, and the walked path distance for the same
point.

Tracking in the 21 in-vivo recordings yielded an average drift ratio of 12.08 +
2.09%, which in absolute values corresponds to 2.7 & 1.0mm. As a comparison,
the drift ratio in the simulated recordings were 8.58% and 10.59%, with absolute
drift values of 0.58 and 0.70mm. Fig. 3 shows orthogonal intersection slices of
the tracking results at ED and ES in two of the recordings.

Tracking in both the simulated and in-vivo recordings consumed approxi-
mately 37ms of processing time per frame on a 2.2GHz Intel Core 2 duo proces-
sor. This makes the method capable of operating in real-time, given a typical
frame-rate of 25fps.



Fig. 3. Orthogonal image slices of the tracked mesh in two of the in-vivo recordings
(patient A’ and ’B’), at both ED and ES. The slices show the initialized mesh in
red (only at ED), and tracked meshes in yellow (both at ED and ES). The difference
between the tracked and initialized mesh at ED constitutes the drift after tracking in
an entire cardiac cycle.

4 Discussion

We have presented a new approach for LV tracking of material points in 3D
echocardiography, using a Kalman filter to fit a deformable subdivision model
to 3D speckle-tracking measurements. The method is automatically initialized
using endocardial edge-detection, and is capable of operating in real-time due to
its strong computational efficiency. Usage of this method might therefore enable
rapid analysis of regional myocardial function.

Automatic myocardial speckle-tracking was feasible in all tested recordings,
both simulated and in-vivo. Based on visual assesment of the tracking and com-
puted drift values, the tracking was found to behave robustly. The obvious dis-
crepancy between absolute drift and drift ratio in the simulations is believed to
stem from the fact that apex moves very little in the simulations, which leads
to high drift ratios in the apical region, even though the absolute drift is quite
small. Furthermore, the method was able to identify the infarcted regions in two
different ultrasound simulations of a left ventricle, although the strain in the
infarcted areas appeared underestimated compared to ground truth.

Tracking accuracy is dependent on the resolution of the subdivision surface
used. Low-resolution surfaces, like the one used in this paper, will exhibit high
robustness, due to the inherent regularization of having fewer parameters to
estimate. This does, however, come at the expense of stronger spatial smoothing
across the surface, compared to more high-resolution surfaces. This might be
some of the reason for the underestimated infarcted strain. Usage of a higher
resolution model, consisting of more control vertices, might therefore enable more
accurate tracking with less spatial smearing of the deformation field. Usage of



more surface points for block-matching might also increase tracking accuracy at
the expense of computational efficiency.

With feasibility of the method demonstrated, the next step will be to compare
its accuracy to alternative approaches in a more quantitative way. Approaches to
improve its accuracy should also be investigated. Currently, tracking is performed
sequentially, from one frame to the next. This can, however, be extended with
bidirectional tracking, using both a forward and backward Kalman-filter to im-
prove tracking accuracy and reduce drift. Speckle-tracking measurements might
also be combined more directly with edge-detection to reduce the surface-normal
component of the inherent drift associated with sequential block-matching.
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