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Abstract

This paper presents a new framework for automatic

real-time left ventricular (LV) tracking in 3D+T echocar-

diography. The framework enables usage of existing bio-

mechanical deformation models for the heart, with nonlin-

ear modes of deformation, combined with edge models for

the endocardial boundary.

Tracking is performed in a sequential state estima-

tion fashion, using an extended Kalman filter to recur-

sively predict and update contour deformations in real-

time. Contours are detected using normal-displacement

measurements from points on the predicted contour, and

are processed efficiently using an information-filter formu-

lation of the Kalman filter.

Promising results are shown for LV-tracking using a

truncated ellipsoid contour model, with deformation pa-

rameters for translation, orientation, scaling and bending

in all three dimensions. The tracking framework automati-

cally detects LV position initially, even in situations where

it is partially outside the volume. It also successfully tracks

the dominant motion and shape changes throughout the

heart cycle in real-time. A collection of 21 3D echocar-

diography recordings of good quality demonstrates that

the framework is capable of automatically identifying and

tracking the left ventricle in 90% of the recordings without

any user input.

1. Introduction

There is a clinical need for real-time monitoring of

cardiac function during invasive procedures and intensive

care. Real-time tracking of the left ventricle (LV) would

hence be beneficial in such situations. The last few years,

3D echocardiography has been introduced. However, no

method for real-time tracking or segmentation of such data

is currently available.

Most tracking approaches in 2D echocardiography have

been based on traditional deformable models as introduced

by Kass [1], which facilitate free-form deformation. How-

ever, these methods tend to be too slow for real-time ap-

plications and also have to be initialized close to the LV

boundaries. The problem can, however, be made tractable

by restricting the allowable deformations to certain prede-

fined modes. This both regularizes the problem to make

tracking more robust, and allows for real-time implemen-

tations based on sequential state estimation.

This state estimation approach was first presented by

Blake et al. in [2], [3] and [4], which used a Kalman fil-

ter to track B-spline models deformed by linear transforms

within a model subspace referred to as shape space. Later,

the framework was applied for real-time left ventricular

tracking in long-axis 2D-echocardiography by Jacob et al.

in [5], [6] and [7]. All these papers were using a B-spline

representation, deformed by a trained linear principal com-

ponent analysis (PCA) deformation model. The papers

also discuss the possibility of extending the framework to

3D echocardiography, which is what has been done in this

paper. The proposed framework also allows for nonlinear

modes of deformations.

2. Methods

Contour model

The tracking framework is based on a contour deforma-

tion model. This model is a function D(...) that transforms

points on a contour template p0 into deformed points p

using a state vector x as parameter:

p = D(p0,x)

This parameterization puts very few restrictions on the

allowable deformation, so virtually “any” deformation

model can be used, including biomechanical models. One

must, however, be able to derive all partial derivatives of

the position as a function of the deformation parameters.

Deformation of contour normals also requires calculation

of the spatial derivatives [8]. This approach differs from

the linear shape space deformations used by Blake and Ja-

cob [2],[3],[4],[5], [6] and [7], where all deformations had
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to be linear in the state vector.

Pursuing the approach by Park et al. [9] we use a trun-

cated ellipsoid as contour template in this paper, and allow

for the following deformation parameters:
• Translation (tx, ty, tz).

• Scaling (sx, sy, sz).

• Rotation/orientation (rx, ry).

• Bending/curving (cx, cy).
In total, these parameters form the state vector below.

x =
[

tx ty tz sx sy sz rx ry cx cy

]T

Kinematic model

To enable modeling of motion in addition to position,

the state vector is augmented to contain the last two suc-

cessive state estimates [3]. The kinematic model for the

predicted state x̄ at timestep k + 1 then becomes:

x̄k+1 = A1x̂k + A2x̂k−1 + B0wk

Tuning of kinematic properties like damping, regulariza-

tion and prediction uncertainty for all deformation parame-

ters can now be accomplished by adjusting the coefficients

in matrices A1, A2 and B0.

Edge measurements

Edge measurements are used to guide the contour to-

wards the object being tracked. This is performed by mea-

suring the distance between contour points and measured

edges in normal direction, called normal displacement [4],

for points along a predicted contour inferred from the mea-

surement model.
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Figure 1. Normal displacement measurements along nor-

mal vectors of a predicted contour.

The normal displacement between a predicted contour

point p with associated normal vector n and a measured

edge point pobs is:

v = nT(pobs − p)

This inner-product form is dimensionally invariant, thus

function just as good for measurements in 3D-data as 2D.

The associated measurement noise r can either be constant

for all edges, or dependent on edge-strength or other mea-

sure of uncertainty.

Edge model

The high levels of noise and speckle in ultrasound

recordings makes edge detection difficult. Robust edge

detectors that minimize the chance of detecting spurious

edges in noisy areas are therefore desired.

An edge-model that exhibits robust characteristics is the

step model [10]. This model assumes edges to form a

transition in image intensity, for one plateau to another,

and calculates the edge position that minimizes the sum of

squared errors between the model and the data.
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Figure 2. Overview over the contour deformation and

edge measurement process. The figure shows how points

on the initial contour p0, n0 are first deformed using a

predicted state x̄, yielding a deformed contour p, n and

measurement vector h. Edges are then measured relative

to the predicted contour, resulting in normal displacements

v with associated measurement error variances r.

Measurement linearization

Normal displacement measurements can be used as

measurement model in a Kalman filter model for the track-

ing problem. This is possible by linearizing the nonlin-

ear deformation model around the predicted deformation

state and using an extended Kalman filter [11] implemen-

tation. Altogether, this results in a measurement vector h

that is based on the state-space Jacobian of the measure-

ment model, meaning all partial derivatives of contour po-

sition with regard to all state dimensions, evaluated at the

predicted state.

The linearized measurement vector then becomes the

normal vector projection of the Jacobian matrix:

hT
≡ nT

∂D(p0,x)

∂x

Measurement processing

Assumption of independent measurements allows mea-

surements to be summed together efficiently in informa-

tion space [11], since independent measurements lead to

diagonal measurement covariance matrices. All measure-

ment information can then be summed into an information
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Figure 3. Overall framework structure.

vector and matrix of dimensions invariant to the number of

measurements:

HTR−1v =
∑

i hir
−1

i
vi

HTR−1H =
∑

i hir
−1

i
hT

i

This is the same form as was used in [4].

Measurement update equations

Contour tracking forms a special problem structure,

since the number of measurement typically far exceed the

number of state dimensions. Ordinary Kalman gain calcu-

lation will then be computationally intractable, since they

involve inverting matrices with dimensions equal to the

number of measurements. An alternative approach, pre-

sented by Blake and Isard in [4], avoids this problem by

altering the measurement update step in the Kalman fil-

ter. This is accomplished by utilizing that the Kalman gain

Kk ≡ P̂kH
TR−1, and reformulating to account for mea-

surements on information filter [11] form. The updated

state estimate x̂ for timestep k then becomes:

x̂k = x̄k + Kkvk

x̂k = x̄k + P̂k(HTR−1vk)

Measurement innovations are here efficiently summed into

a measurement vector with dimension equal to the state

dimension.

The error covariance update equations can similarly be

performed in information space to avoid inverting large

matrices:

P̂−1

k
= P̄−1

k
+ HTR−1H

This form only requires inversion of matrices with dimen-

sions equal to the state dimension.

3. Results

A collection of 21 apical 3D-echocardiography record-

ings served as independent validation of the method. The

same configuration were used for all recordings, with an

initial LV contour automatically placed at a depth of ap-

proximately 80mm in the first frame as shown in figure 4.

The tracking was then run for a couple of heartbeats to give

the contour enough time to lock on to the LV.

The experiments were performed using an LV-contour

consisting of 426 contour points. Edge detection was per-

formed in the normal direction of each of these points,

using 20 samples spaced 1mm apart. Real-time tracking

in 25fps 3D echocardiography datasets yielded a modest

CPU load of approximately 18%1.

The results are summarized in table 1. One can see that

the tracking was performed with subjectively good or ad-

equate quality in 90% of the 21 recordings present in the

dataset. Figure 5 and 6 shows examples of good tracking

in an ordinary recording, and a recording with apex out-

side the volume. Figure 4 shows the initial contour used

in all recordings, as well as the contour after tracking for a

couple of heartbeats.

Quality Count Description

Good 16 Tracking performed well.

Adequate 3 Tracking with reduced accuracy.

Fair 1 Tracking with low accuracy.

Poor 1 Unable to automatically track

Table 1. Overall performance of the automatic tracking.

Subjectively scored by the author.

Figure 4. Azimuth view of the initial contour (left), and

tracking results after the contour has locked on the LV after

a couple of heartbeats (right).

4. Discussion and conclusions

A novel framework for real-time contour tracking in

3D echocardiography using sequential state estimation has

been proposed. The framework builds upon previous work

by Blake et al. [4], and enables tracking of of deformable

contours with nonlinear modes of deformation. The fea-

sibility of the framework has been demonstrated by auto-

matic tracking in several recordings using a truncated el-

1The tracking were then performed using a C++ implementation on a
3GHz Intel Pentium 4 processor. Visualization were disabled for CPU
benchmarking.
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Figure 5. Azimuth and elevation view of a recording with

good tracking.

Figure 6. Azimuth and elevation view of tracking when

LV is partially outside the volume.

lipsoid model. The tracking framework was found to au-

tomatically detect LV position initially, even in situations

where the LV is partially outside the acquired volume.

It can be argued that the evaluation procedure performed

is too subjective and should have been performed by a

medical clinician. However, the principal objective was

not to get an accurate segmentation of the LV suitable for

clinical diagnosis, but merely to demonstrate the ability to

track the dominant motion and shape changes throughout

the heart cycle. Further research will focus on perfecting

the method, and striving towards tracking that is both ro-

bust and accurate.

Traditional free-form deformation models are not capa-

ble of operating in real-time in volumetric data. The pro-

posed framework instead sacrifices accuracy for the ca-

pability of automatic real-time tracking within a limited

shape space. This limited shape space also serves to regu-

larize the problem, thus making tracking more robust.

The general deformation formulation also places few

restrictions on the modes of deformations allowed. It is

therefore believed that the truncated ellipsoid model can

be replaced with a more realistic biomechanical model for

the LV. This is likely to yield better model fitting to the

data, and hence improve tracking accuracy.
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