
Comparison of Kalman Filter Estimation Approaches for
State Space Models with Nonlinear Measurements

Fredrik Orderud
Sem Sælands vei 7-9, NO-7491 Trondheim

Abstract

The Extended Kalman Filter (EKF) has long been the
de-facto standard for nonlinear state space estimation
[11], primarily due to its simplicity, robustness and
suitability for realtime implementations. However, an
alternative approach has emerged over the last few
years, namely the unscented Kalman filter (UKF). This
filter claims both higher accuracy and robustness for
nonlinear models. Several papers have investigated the
accuracy of UKF for nonlinear process models, but
none has addresses the accuracy for nonlinear mea-
surement models in particular. This paper claims to
bridge this gap by comparing the performance of EKF
to UKF for two tracking models having nonlinear mea-
surements.

1 Introduction

The problem ofstate estimationconcerns the task of
estimating the state of a process while only having
access to noisy and/or inaccurate measurements from
that process. It is a very ubiquitous problem setting,
encountered in almost every discipline within science
and engineering.

The most commonly used type of state estimator is the
Kalman filter. It is an optimal estimator for linear sys-
tems, but unfortunately very few systems in real world
are linear. A common approach to overcome this prob-
lem is to linearize the system first before using the
Kalman filter, resulting in an extended Kalman filter.
This linearization does however pose some problems,
e.g. it can result in nonstable estimates [8]. The de-
velopment of better estimator algorithms for nonlin-
ear systems has therefore attracted a great deal of in-
terest in the scientific community, because improve-
ments here will undoubtedly have great impact in a
wide range of engineering fields.

Notation

Algebraic letters are distinguished based on their ap-
pearance: Normal (a) denotes scalars, bold (a) denotes
vectors and uppercase (A) denotes matrices. Sub-
scripts (xa) denote discrete time. Conditional sub-
scripts (xa|b) denote statex in time a, given measure-
ments up to timeb. A ‘hat’ superscript ( ˆa) denotes an
estimated value, known only with a certain belief.

2 Background

A state space model is a mathematical model of a
process, where the process’statex is represented by
a numerical vector. State-space models actually con-
sists of two separate models: theprocess model, which
describes how the state propagates in time based on ex-
ternal influences, such as input and noise; and themea-
surement model, which describe how measurementsz
are taken from the process, typically simulating noisy
and/or inaccurate measurements.

2.1 General State Space Model

The most general form of state-space models is the
nonlinear model.
This model does typically consist of two functions,f
andh:

xk+1 = f (xk,uk,wk)
zk = h(xk,vk)

which govern state propagation and measurements, re-
spectively.u is process input, andw andv are state and
measurement noise vectors, respectively whilek is the
discrete time.
State-space models are remarkably usable for mod-
elling almost all sorts of processes.f andh are usually
based upon a set of discretized differential equations,
governing the dynamics of and observations from the
process.
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Figure 1:A general state-space model. z−1 is the unit
delay function known from the Z-transform in digital
signal processing.

2.2 Linear State Space Model

A linear state-space model is a model where the func-
tions f andh are linear in both state and input. The
functions can then be expressed by using the matrices
F , B and H, reducing state propagation calculations
to linear algebra. Overall this results in the following
state-space model:

xk+1 = Fkxk +Bkuk +wk

zk = Hkxk +vk
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Figure 2:A linear state-space model

This linear model is easier both to calculate and an-
alyze. Enabling modellers to investigate properties
such as controllability, observability and frequency re-
sponse [3].
Linear state models are either based on inherently lin-
ear processes, or simply a linearized versions of a non-
linear process by means of a first order Taylor approx-
imation.

3 State Estimation

State estimation concerns the problem of estimating
the probability density function (pdf) for the state of
a process which is not directly observable. This in-
volves both predicting the next state based on the cur-
rent, and updating/correcting this prediction based on
noisy measurements taken.

3.1 Recursive Bayesian Estimation

The most general form for state estimation is known
as recursive Bayesian estimation [1]. This is the op-

timal way of predicting a state pdf for any process,
given a system and a measurement model. In this sec-
tion we will discuss this estimator, which recursively
calculates a new estimate for each time-step, based on
the estimate for the previous timestep and new mea-
surements.
Recursive Bayesian estimation works by simulating
the process, while at the same time adjusting it to ac-
count for new measurementsz, taken from the real
process. The calculations are performed recursively
in a two step procedure. First, the next state is pre-
dicted, by extrapolating the current state onto next
time step using state propagation beliefp(xk|xk−1) ob-
tained from functionf . Secondly, this prediction is
corrected using measurement likelihoodp(zk|xk) ob-
tained from functionh, taking new measurements into
account.
The Chapman-Kolmogorov equation is first used to
calculate a prior pdf for statexk, based on measure-
ments up to timek−1:

p(xk|zk−1) =
Z

p(xk|xk−1)p(xk−1|zk−1)dxk−1

Bayes rule is then used to calculate the updated pdf
for statexk, after taking measurements up to timek
into account:

p(xk|zk) =
p(zk|xk)p(xk|zk−1)R

p(zk|xk)p(xk|zk−1)dxk

p(x |z  ) zk

updatepredict

kk-1

p(x |z )k k

Figure 3:Recursive Bayesian estimator loop

Unfortunately, this method does not scale very well
in practice, mainly due to the large state space for
multidimensional state vectors. Calculating the prior
probability of each point in this state space involves
a multidimensional integral, which quickly becomes
intractable as the state space grows. Computers are
also limited to calculation of the pdf in discrete point
in state space, requiring a discretization of the state
space. This technique is therefore mainly considered
as a theoretic foundation for state estimation in gen-
eral. Bayesian estimation by means of computers
is only possible if either the state space can be dis-
cretized, or if certain limitations apply for the model.



3.2 Kalman Filter

The problem of state estimation can be made tractable
if we put certain constrains on the process model, by
requiring bothf andh to be linear functions, and the
noise termsw andv to be uncorrelated, Gaussian and
white with zero mean. Put in mathematical notation,
we then have the following constraints:

f (xk,uk,wk) = Fkxk +Bkuk +wk

h(xk,vk) = Hxk +vk

wk ∼ N(0,Qk) vk ∼ N(0,Rk)

E(wiwT
j ) = Qiδ(i− j) E(vivT

j ) = Riδ(i− j)

E(wkvT
k ) = 0

whereQ andRare covariance matrices, describing the
second-order properties of the state- and measurement
noise. The constraints described above reduces the
state model to:

xk+1 = Fkxk +Bkuk +wk

zk = Hkxk +vk

whereF , B andH are matrices, possible time depen-
dent.
As the model is linear and input is Gaussian, we know
that the state and output will also be Gaussian [12].
The state and output pdf will therefore always be nor-
mally distributed, where mean and covariance are suf-
ficient statistics. This implies that it is not necessary
to calculate a full state pdf any more, a mean vectorx̂
and covariance matrixP for the state will suffice.

x zPk|k-1

updatepredict

x k|k P

kk|k-1

k|k

Figure 4:Kalman filter loop

The recursive Bayesian estimation technique is then
reduced to theKalman filter, wheref andh is replaced
by the matricesF , B andH. The Kalman filter is, just
as the Bayesian estimator, decomposed into two steps:
predict and update. The actual calculations required
are:
Predict next state, before measurements are taken:

x̂k|k−1 = Fkx̂k−1|k−1 +Bkuk

Pk|k−1 = FkPk−1|k−1FT
k +Qk

Update state, after measurements are taken:

Kk = Pk|k−1HT
k (HkPk|k−1HT

k +Rk)−1

x̂k|k = x̂k|k−1 +Kk(zk−Hkx̂k|k−1)

Pk|k = (I −KkHk)Pk|k−1

whereK is the Kalman gain matrix, used in the up-
date observer, andP is the covariance matrix for the
state estimate, containing information about the accu-
racy of the estimate. More details and background for
this filter can be found in [2].
The Kalman filter is quite easy to calculate, due to the
fact that it is mostly linear, except for a matrix inver-
sion. It can also be proved that the Kalman filter is an
optimal estimator of process state, given a quadratic
error metric [2].

3.3 Extended Kalman Filter

Most processes in real life are unfortunately not linear,
and therefore needs to be linearized before they can be
estimated by means of a Kalman filter. The extended
Kalman filter (EKF) solves this problem by calculating
the Jacobian1 of f andh around the estimated state,
which in turn yields a trajectory of the model function
centered around this state.

x

y y=f(x)

Figure 5:Illustration of how the Extended Kalman fil-
ter linearizes a nonlinear function around the mean of
a Gaussian distribution, and thereafter propagates the
mean and covariance through this linearized model

Fk =
∂ f (x,u,w)

∂x

∣∣∣∣
x̂k|k,uk,0

Hk =
∂h(x,v)

∂x

∣∣∣∣
x̂k|k−1,0

1The Jacobian is the matrix of all partial derivatives of a vector



The extended Kalman filter works almost like a regular
Kalman filter, except forF andH, which vary in time
based on the estimated statex̂. The actual calculations
required are:
Predict next state, before measurements are taken:

x̂k|k−1 = f (x̂k−1|k−1,uk,0)

Pk|k−1 = FkPk−1|k−1FT
k +Qk

Update state, after measurements are taken:

Kk = Pk|k−1HT
k (HkPk|k−1HT

k +Rk)−1

x̂k|k = x̂k|k−1 +Kk(zk−h(x̂k|k−1,0))

Pk|k = (I −KkHk)Pk|k−1

whereK is the Kalman gain matrix, used in the update
observer, andP is the covariance matrix for the state
estimate, containing information about the accuracy of
the estimate.

3.4 Unscented Kalman Filter

3.4.1 Introduction

The problem of propagating Gaussian random vari-
ables through a nonlinear function can also be ap-
proached using another technique, namely theun-
scented transform. Instead of linearizing the func-
tions, this transform uses a set of points, and propa-
gates them through the actual nonlinear function, elim-
inating linearization altogether. The points are chosed
such that their mean, covariance, and possibly also
higher order moments, match the Gaussian random
variable. Mean and covariance can be recalculated
from the propagated points, yielding more accurate re-
sults compared to ordinary function linearizaton. The
underlying idea is also to approximate the probabil-
ity distribution instead of the function. This strategy
typically does both decrease the computational com-
plexity, while at the same time increasing estimate ac-
curacy, yielding faster, more accurate results.

3.4.2 Background

The underlying method of unscented transform was
first proposed by Uhlmann et al. in [11] and [10],
where they laid out the framework for representing
a Gaussian random variable inN dimensions using
2N + 1 samples, calledsigma points. They utilized
the matrix square root and covariance definitions to se-
lect these points in such a way that they had the same

covariance as the Gaussian they approximated. Skew-
ness was avoided by selecting the points in a symmet-
ric way, such that any approximation error would only
originate from the fourth and higher moments.
Usage of the unscented transform in Kalman filter-
ing was then presented by Julier in [8], where he in-
troduced theUnscented Kalman filter(UKF), which
approximates the state estimate using sigma points.
Later, it was analyzed more in depth in [16].
A limitation associated with the unscented Kalman fil-
ter is that it has a lower bound on thesafe spreadof
the sigma points, meaning the distance between the
points in state space. Sigma point spreads below this
bond are not guaranteed to yield positive semidefinite
correlation matrices. This distance also increases with
the dimension of the state space, a limitation that may
cause problems in highly nonlinear models, since high
sigma point spread may result in sampling of non-local
features.
The technique presented here is therefore based on the
scaled unscented transform[6], which provides an ad-
ditional tuning parmeter,α, compared to the original
unscented transform. This parameter is used to arbi-
trary control the spread of the sigma-points, while at
the same time guaranteeing positive semidefinite co-
variance matrices. Even models of high dimensonality
can then keep a tight sigma point spread to avoid non-
local effects.

3.4.3 Augmented state

The unscented transform approach also has another
advantage, namely that noise can be treated in a non-
linear fashion to account for non-Gaussian or non-
additive noises. The strategy for doing so involves
propagation of noise through the functions by first aug-
menting the state vector to also include noise sources,
a technique first introduced by Julier in [7], and later
refined more in depth by Merwe in [16]. Sigma point
samples are then selected from the augmented state,
xa, which also includes noise values. The net result
is that any nonlinear effects of process and measure-
ment noise are captured with the same accuracy as the
rest of the state, which in turn increases accuracy for
non-additive noise sources.

3.4.4 Filter Formulation

The filter starts by augmenting the state vector toL
dimensions, whereL is the sum of dimensions in the
original state-vector, model noise and measurement
noise. The covariance matrix is similarly augmented
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Figure 6: Illustration of how the unscented Kalman
filter propagates sigma-points from a Gaussian distri-
bution through a nonlinear function, and recreates a
Gaussian distribution, by calculating the mean and co-
variance of the results

to aL2 matrix. Together this forms the augmented state
estimate vectorxa and covariance matrixPa:

xa
k−1 =

xk−1

0w

0v


Pa

k−1 = E{(xa
k−1− x̂a

k−1)(x
a
k−1− x̂a

k−1)
T}

=

Pk−1 0 0
0 Qk−1 0
0 0 Rk−1


The next step consists of creating 2L+1 sigma-points
in such a way that they together captures the full mean
and covariance of the augmented state. Theχa matrix
is chosen to contain these points, and its columns are
calculated as follows:

χa
0,k−1 = xa

k−1 i = 0

χa
i,k−1 = xa

k−1 +(α
√

LPa
k−1)i , i = 1...,L

χa
i,k−1 = xa

k−1− (α
√

LPa
k−1)i−L, i = L+1...,2L

where subscripti means thei-th column of the square
root of the covariance matrix2. The α parameter, in
the interval 0< α≤ 1, determines sigma-point spread.
This parameter is typically quite low, often around
0.001, to avoid non-local effects.
The resultingχa

k−1 matrix can now be decomposed
vertically into theχx

k−1 rows, which contains the state;
the χw

k−1 rows, which contains sampled process noise

2The square root of a symmetric matrix is typically calculated
by means of a lower triangular Cholesky decomposition. The
square rootA of matrixP is then on the formP = AAT .

and theχv
k−1 rows, which contains sampled measure-

ment noise.
Each sigma-point is also assigned a weight. These
weight are derived by comparing the moments of the
sigma-points with a Taylor series expansion of the
models while assuming a Gaussian distribution, as de-
rived in [9]. The resulting weights for mean (m) and
covariance (c) estimates then becomes:

w(m)
0 = 1− 1

α2 i = 0

w(c)
0 = 4− 1

α2 −α2 i = 0

w(m)
i = w(c)

i =
1

2α2L
i = 1...,2L

The filter then predicts next state by propagating the
sigma-points through the state and measurement mod-
els, and then calculating weighted averages and covari-
ance matrices of the results:

χx
k|k−1 = f (χx

k−1,uk,χw
k−1)

x̂k|k−1 =
2L

∑
i=0

w(m)
i χx

k|k−1

Pk|k−1 =
2L

∑
i=0

w(c)
i [χx

k|k−1− x̂k|k−1][χx
k|k−1− x̂k|k−1]T

Zk|k−1 = h(χx
k|k−1,χ

v
k−1)

ẑk|k−1 =
2L

∑
i=0

w(m)
i Zi,k|k−1

The predictions are then updated with new measure-
ments by first calculating the measurement covari-
ance and state-measurement cross correlation matri-
ces, which are then used to determine the Kalman gain:

Pzz=
2L

∑
i=0

w(c)
i [Zi,k|k−1− ẑk|k−1][Zi,k|k−1− ẑk|k−1]T

Pxz =
2L

∑
i=0

w(c)
i [χx

i,k|k−1− x̂k|k−1][Zi,k|k−1− ẑk|k−1]T

Kk = PxzP
−1
zz

x̂k|k = x̂k|k−1 +Kk(zk− ẑk|k−1)

Pk|k = Pk|k−1−KkPyyK
T
k

Experimental results indicate [16] that Unscented
Kalman filters yield results comparable to a third or-
der Taylor series expansion of the state-model, while
Extended Kalman filters of course only are accurate to
a first order linearization. Consult [14] for a compari-
son of accuracy between the two kinds of filters.



The most computationally demanding part of the Un-
scented Kalman filter is the matrix square-root used
to calculate sigma points. Matrix diagonalization or
Cholesky factorization of the covariance matrix can be
used to solve this problem, but a more direct square
root approach, propagating only the square-roots of
the covariance matrices, offers higher computationally
efficiency. Merwe et al. proposes a approach for doing
this in [15].

3.5 Other Approaches

Central difference Kalman filter(CDKF) proposed in
[4] offers an alternative Kalman formulation for prop-
agating Gaussianpdfs through nonlinear functions.
This formulation, although it is different, remains very
much like UKF and is reported to perform indistin-
guishable from UKF in all tests performed [13]. The
CDKF is therefore not addressed by this paper.
Particle filters[1]: While the various types of Kalman
filters often offers superb estimation accuracy, there
are situations where they are not suited for the task.
This problem relates to the fact that all Kalman fil-
ters are constrained to only model Gaussian probabil-
ities, and are therefore incapable of handling skewed
or multimodal distributions. A more general ap-
proach is therefore needed when trying to estimate
non-Gaussian distributions. Particle filters, which are
based on sequential Monte-Carlo simulations using
importance sampling, can then often be a good alter-
native. Particle filters are not addressed here, since
this paper focuses on estimating only the most proba-
ble state of a process, and not the entire process pdf,
thus rendering particle filters superfluous. Particle fil-
ters are also much more computationally demanding
than Kalman filters, often making them intractable for
usage in real-time settings.

4 Experiments

The experiments described here aims at determining
whether there are any difference between EKF and
UKF for practical tracking applications, having linear
process models and nonlinear measurement models.

4.1 Process Model

The basis for the experiment is an aeroplane, modelled
linearly as a dual Wiener process3 for position and ve-
locity respectively, driven by white noise acceleration.

3Wiener processes are integrated white noise

The model ˙px = vx, ṗy = vy, v̇x = ax andv̇y = ay yields
the following discrete time process model when as-
suming zero order hold with timestepTs = 1.


px

py

vx

vy


k+1

=


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1




px

py

vx

vy


k

+


0
0
ax

ay


k

where the accelerationsax anday are modelled as un-
correlated white noise with a variance of 0.5.
The process is assumed to start in the following state:

x0 = [−200 200 4 0]T

with the squared error metric(x− x̂)T(x− x̂) for esti-
mation accuracy.

4.2 Tracking by Radar

Radar tracking can be modelled with a measurement
model observing distance and angle to the target:[

d
Θ

]
=

[ √
p2

x + p2
y

atan(py/px)

]
+

[
n1

n2

]
where the measurement model is clearly nonlinear.
The radar is assumed to be positioned in the coordi-
nates(0,0) with measurement noisesn1 andn1, having
a variance of 200 and 0.003, respectively.

d

Figure 7: Tracking of plane motion by means of a
radar

4.3 Tracking by Triangulation

Tracking by triangulation can similarly be modelled
with a measurement model observing distances to the
target from two observators:[

d1

d2

]
=

[ √
(px− p1x)2 +(py− p1y)2√
(px− p2x)2 +(py− p2y)2

]
+

[
n1

n2

]
where the measurement model is also clearly nonlin-
ear. The observators are assumed to be positioned in



d1 d2

Figure 8:Tracking of plane motion by means of trian-
gulation

the coordinates(−300,0) and(300,0), with measure-
ment noisesn1 andn2, both having a variance of 200
.
This configuration also poses an ambiguity problem,
since measurements coming from a given position will
be equal to the same position flipped about the x-axis.
This will probably not be a big problem, since the
process model prediction will help resolving this am-
biguity.

−200 −150 −100 −50 0 50 100
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Observed, true and estimated trajectory

observations
true trajectory
estimated trajectory

Figure 9: Example illustration of observations, true
trajectory and estimated trajectory for the experiments
using the UKF

4.4 Results

A dual simulation/estimation experiment was run
10000 times. Each time, a simulated plane trajectory
were estimated over 80 time steps, by both EKF and
UKF for both of the observation models. The estima-
tion accuracy results are shown in the table below, with
accuracy distribution plots in the accompanying figure.
The MSE estimate variance is calculated from the em-
pirical error distribution, using

VAR(MSE) = VAR(error)/N

Model EKF MSE UKF MSE
Radar 174.4 (5.00) 116.9 (0.363)

Triangulation 185.2 (3.15) 183.1 (2.81)

Table 1: Mean squared error (MSE) for the estima-
tions, saturating errors above 1000. Accuracy vari-
ance is given in parenthesis.
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Figure 10:Estimation accuracy distributions

assuming validity of the central limit theorem.
The radar model, having measurements involving the
highly nonlinear arcus-tangent, shows a wider differ-
ence in the estimation accuracy between EKF and
UKF, compared to the triangulation model which only
has Pythagoras’ measurements, being significantly
more linear. It can further be seen that UKF seems
to show a higher degree of robustness, having fewer
estimates with errors above 1000 for both of the mod-
els.

5 Conclusion

Several papers have investigated the accuracy of UKF
for nonlinear process models [16], [5], but none has
addresses the accuracy for nonlinear measurement
models in particular.
This paper did therefore compare the relative estima-
tion accuracy of UKF compared to EKF for linear state
space models with nonlinear measurements. The em-
pirical results shows a significant difference for the
radar model, but not for the tracking model. This is
believed to be caused by the difference in nonlinear-
ity between the two models, having a highly nonlin-
ear radar model and a relatively more linear tracking
model. The relative advantage of using UKF does
therefore seem to increase with the degree of nonlin-
earity in the measurement model. This finding is con-



sistent with the arguments for using the UKF presented
in [16].
The estimation error distribution plots show that the
two estimators yield quite similar results for both
models, with the most significant exception being the
amount of estimates having severely large errors. This
leads us to the conclusion of UKF being a more robust
estimator than EKF.
Statement of reproducibility: All program code re-
quired to reproduce the results shown in this paper are
freely available upon request by contacting the author.
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